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BACKWARD ERROR ANALYSIS OF CYCLIC REDUCTION 
FOR THE SOLUTION OF TRIDIAGONAL SYSTEMS 

PIERLUIGI AMODIO AND FRANCESCA MAZZIA 

ABSTRACT. Tridiagonal systems play a fundamental role in matrix computation. 
In particular, in recent years parallel algorithms for the solution of tridiagonal 
systems have been developed. Among these, the cyclic reduction algorithm 
is particularly interesting. Here the stability of the cyclic reduction method is 
studied under the assumption of diagonal dominance. A backward error analysis 
is made, yielding a representation of the error matrix for the factorization and 
for the solution of the linear system. The results are compared with those for 
LU factorization. 

1. INTRODUCTION 

Tridiagonal matrices arise in a large variety of applications. It is known 
that for the solution of linear systems, the LU factorization is the best scalar 
algorithm. Since it is not efficient for parallel computation, many algorithms 
which may be easily parallelized have been proposed [11, 13, 15]. Among many 
others, the cyclic reduction algorithm appears to be the most interesting [1, 2, 
3, 4, 9, 10, 14]. As a result, an increasing number of papers have been written 
in the last ten years which consider cyclic reduction. 

So far, no backward error analysis has been made. The main result about 
cyclic reduction is given by Heller [6], concerning block tridiagonal systems. 
Heller shows that norms of the off-diagonal blocks (relative to the diagonal 
blocks) decrease quadratically with each reduction. This is useful when an ap- 
proximate solution is desired, as in a preconditioner based on cyclic reduction. 

A backward error analysis is carried out in the following sections. We use a 
block representation of the algorithm, which provides a simpler way to analyze 
the propagation of the error. 

In the case of diagonal dominance it is well known that, for the LU factori- 
zation, the backward error in the solution obtained in floating-point arithmetic 
may be bounded from above by a quantity independent of the dimension of 
the matrix [8, 16]. Therefore, the algorithm is numerically stable. The results 
of our backward error analysis for the cyclic reduction algorithm show that, for 
diagonally dominant matrices, the backward error of the computed solution is 
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bounded by a factor which depends on the logarithm of the dimension of the 
linear system. This is a satisfactory growth rate for error propagation, but in 
fact it is a pessimistic upper bound. In numerical tests we show that a more 
accurate upper bound may be computed which is comparable to that of LU 
factorization. 

In ?2 a brief description of the algorithm is presented and a block represen- 
tation for the factorization of the coefficient matrix is proposed. In ??3-4 the 
backward error analysis for the factorization and for the solution of the linear 
system is presented. This analysis takes into account the special structure of the 
matrices involved in the propagation of the error. 

2. BLOCK REPRESENTATION OF THE CYCLIC REDUCTION ALGORITHM 

Consider the following system of linear equations: 

(2.1) Mx = f , 

where the coefficient matrix M is tridiagonal, 

/a, bi 

(2.2) M= C2 a2 

Cn an 

We derive the cyclic reduction algorithm by considering a block factorization 
of M. By means of an odd-even permutation matrix PI (which transforms the 
sequence 1, . . ., n into the sequence 1, 3, 5,. . ., 2, 4, 6,... ) the matrix M 
is expressed as a 2 x 2 block matrix 

(2.3) PI MP(T I T,) 

with Al and B1 diagonal matrices 

a, a2 

A1= a3 , B1= a4 

and SI and T1 bidiagonal (not necessarily square) matrices 

/C2 b2 bi 
S,= t C4 b4 ) T1= (C3 b3 ) 

The permuted matrix (2.3) is factored as 

P1MP = L1D1 U1, 
where LI and U1 are block triangular 

L1 = (5S-1 I) ui= (Al 7i) 
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and D1 is block diagonal 

D(I M1 ) 

with a tridiagonal block M1 = B1 - SIA-1 T1 of dimension Ln/2J x Ln/2J (MI 
is the Schur complement of A1 in PI MPT). 

The same procedure is applied to M1 (or equivalently to D1, leaving un- 
changed the top left block). That is, we consider a Ln/2J x Ln/2J odd-even 
permutation matrix Q2 and 

P2=( Q2) 

and carry out the factorization 

DI = p2T | A2 T2 P2=P2TL2D2U2P2 
\ S2 B2/ 

in which D2 is block diagonal and contains a tridiagonal sub-block M2 of 
dimension Ln/4J x Ln/4J . By iterating this process of reduction, after j steps 
the matrix 

(2.4) Dj=(I _ ) 

(where Do = M) is factored in the form 

Dj1I = PTLj-Dj UjPj, 
where 

( SjA-' I I 

DjS ) ( A 

Mj, 

This new block decomposition is obtained so that the blocks on the main 
diagonal are square of dimension respectively n - Ln/2j-lJ on the first row, 
Ln/2j-lJ - Ln/21J on the second, Ln/21J on the third. The reduction process 
stops after k = [log2 nJ steps when the block Mk is 1 x 1 and Dk is diagonal. 

The following summarizes the factorization of the matrix M: 

(2.5) M = P(TLIP2TL2 ..Pk LkDkUkPk... U2P2UlPlI 

Consider now a block representation of the cyclic reduction algorithm for the 
solution of the problem (2.1) that will be useful for the stability analysis. 

Algorithm 1. Let 
a) Mo = M be a tridiagonal matrix of order n, yo = f; 
b) Qj, for j = 1, .. ., k = [log2 nJ , be an odd-even permutation matrix of 



604 PIERLUIGI AMODIO AND FRANCESCA MAZZIA 

order j such that 

(A j T 
=QjMji IQT and (YyeQ- 

I 
Qjyj-I Sj Bj1j_ 

The following algorithm computes the solution xo of Mx= f by cyclic reduc- 
tion: 

for j=1, k 
Vj = SjA) 
Mj = Bj-VjT 
Yi =- yje l j;jo- I 

end 
Xk =Mk71 Yk 
for j= k, 1,-1 

Xj_ 1 = QTf( AI (yj_l - Tjxj)) 
Xi / 

end 

Denote by ai, bi, ci respectively the nonzero elements on the main diagonal, 
the upper and the lower off-diagonal of Mj- I, and by a' , b' , c' the respective 
elements of Mj (when it is not confusing, we always simplify the notation and 
let ai, bi, ci be the generic elements ai(r), b(r), C(r) of Mr ). Let further si 
and ti denote the generic elements on the two nonzero diagonals of Vj . Then, 
if m = Ln/2'J, the elements of the matrices Vj and Mj in Algorithm 1 are 
computed as follows: 

for i= 1, m 
Si = c2i/a2i-l 

ti = b2i/a2i+l (tm = 0 if Ln/2J-1J is odd 
at = a2i - sib2i-1 - tiC2i+l 

b = -tib2i+l (bm = 0) 
c = -SiC2i-l (C' = 0) 

end 
while the algorithms for the jth step in the solution of the two linear systems 
are: 

for i=1, m 

2i S i-1 - 2i+1 
end 

and 
for i=1, m 

X2i-1 I (2Ji-1) - C2i-IXi(j)i - b2i_lXi(j))1a2i-1 

2i - i 
end 
if Ln/2j- is odd x2j-1) = 21)- C2m+?lXmj))la2m+l 

The factorization of the coefficient matrix M requires 8n operations while 
the solution of the linear systems requires 9n operations. The number of op- 
erations is twice the number of operations of the LU factorization algorithm, 
but this algorithm is easier to parallelize. 
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We introduce now the following convention: 

UAj = A1A2 Ai 
j=1 

and we recall an important characterization of the factorization, also contained 
in [6], that will be used in the next sections. 
Theorem 1. The cyclic reduction factorization for the matrix M, 

k k 

M = fJPiTLi Dk fj Uk-i+lPk-i+l, 
i=1 i=1 

may be expressed as the LU factorization of the permuted matrix 

k k 

rjpiM rjpk-i+l' 
i=l i=1 

The matrices Mi (with i varying from 1 to k = log2 nJ ) enjoy special 
properties which are useful for studying the stability of the factorization. The 
two following theorems concern diagonally dominant matrices (see [17] for the 
proofs). 

Theorem 2. If Mo = M is diagonally dominant by rows (by columns), then all 
the matrices Mi are diagonally dominant by rows (by columns). 

Moreover, it has been proved that if M is strictly diagonally dominant, then 
the ratio between each element on the off-diagonal and the corresponding one on 
the main diagonal of Mi decreases quadratically as i varies from 1 to [log2 nJ 
[6]. 
Theorem 3. If M is diagonally dominant by rows or by columns, then for each 
matrix Mi there holds 

limililoo < ||MIlCoo 

3. BACKWARD ERROR ANALYSIS 

Assume that computations are carried out in floating-point arithmetic follow- 
ing the model 

fl(x opy) = (x opy)(1 +ul) and fl(x opy) = l Y 

Iuil < u, for i= 1, 2, 
where u is the unit roundoff and op E {+, -, *, /}I. 

The implementation of the cyclic reduction algorithm on a computer for the 
solution of the problem (2.1) gives, instead of the exact solution x, an approx- 
imate solution i. In the following we obtain an upper bound for the infinity 
norm of the matrix AM such that x is the exact solution of the perturbed 
problem 

(M + AM)i = f 
when M is diagonally dominant. 
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In the backward error analysis we introduce a matrix 3M containing the 
error due to the factorization. Let 

k k 

L= fPfjLj and U=kflk-j+lPk-j+l, 
j=1 j=1 

where DI, Li, Uj are the computed matrices Dk , Lj, and Uj of (2.5). Then 

(3.1) 3mM=LU-M. 

Moreover, we consider two further error matrices JL and 3U arising in the 
numerical solution of the two triangular systems with matrices L and U, so 
that x is the exact solution of the system 

(L + 3L)(U + JU)i = f. 

In first-order approximation we obtain (for any compatible norm) 

(3.2) IIAMII < 113M + 3L U + L 3UII, 

while the relative error of the solution may be bounded by 

(3.3) li - xll < tiM-li IIAMiI. 

To obtain the error matrices 3M, 3L, and 3U, we use an approach which 
permits exploiting the structure of sparsity of the error matrix. 

The factorization of the matrix M is obtained by means of the k steps of 
factorization previously considered. At each step j, a new block-diagonal ma- 
trix Dj, see (2.4), (with the last block being tridiagonal of dimension Ln/2j]) 
is obtained from the matrix Di1 . 

The relations between Dj and Dj_ 1 are expressed by means of the following 
matrix difference equation: 

Dj = L7P1jDj_jpTU?1. 

In floating-point arithmetic, we have 

(3.4) Dj = L-1PjDj_ pT U1- + 3D1 

where 3Dj contains the errors committed in the jth step of the factoriza- 
tion. In order to evaluate the error matrix JDj, we consider the floating-point 
operations (see the description of Algorithm 1): 

(V17\fi = T c2i/a2i1(l+u)=?si if r = i, 
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and 
-tjb2+l( + U3) = b if r= i-i, 

(1a2i(I + u7) - &ib2i_I(1 + u4 + u6 + u7) 

--tiC2i+1(l +U5+U6+U7) =a if r= i, 

-?ie2i-l (1+ U8) = C if r= i +1, 

where juil c u, or in block form: 

Vj = SjA- + J'?j, Mj = B-Vj - Tj + Mj, 

where 3 Vj is lower bidiagonal and 3Mj is tridiagonal. There follows 

1( VJ I < ?9Ak . 1 u, 1dMjl < ITj - VjTjlu + 2 diag(JVjJ lItjl) u, 

where JAI denotes the matrix of the absolute values of the elements of A, 
diag (A) the diagonal matrix containing the main diagonal of A, and inequali- 
ties are understood componentwise. 

Let 

(i I ) D ( I A) ( j PI 

then from (3.4) one gets 

JDj= 0 
-0j6 3V TP - M1) 

Theorem 4. The error matrix 3M defined in (3.1) satisfies 

k i i 

(3.5) 3M=ZfJ PITF J_Pi+, 
j=1 i=1 i=1 

where 

(3.6) H ( ) 

Proof. To show how the error propagates, we define 

3 7 s~~~~Jo = bo -Do = ko - M = O , (3.7) 

ei = Di - Dj = Lj->PjDj lPjT7j-1 + 3Dj - Lj-1PjDj lPfT UT. 

By adding and subtracting the expressions 

LJ P1D1-1P/TU7 I and L. 1PjDj- PI Up1 
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we obtain 

3. e-'= Ly 1P f&p1 + 3Dj + (L1 -U1 )PjDj>Pf Up1 
+L71 P TDif(Up-1 U-U1) =L PIcPfp1+ , + L-PDj-P(j- - J.- )=t pjej_lT1 l 

where 

Zj= Ajj. A- I Tj - Aj4-'T Pj 
3 Vj + (Vj - Vj)Aj4j-AJ1 Mj J Vj Tj + (Vj - Vj)(Tj - AjAj- 1.Tj) 

Solving the difference equation in (3.8) yields 

k k-j k 

=k ZE J(Pk[j+lLk-i+1l)'Z 71 (UiPi)-. 
j=1 i=1 j=j+l 

For j = 1, ...,k, let Lj = j PiTLi and Uj = r=j U1ji+iPj-i+l (Lk = 

L and Uk = U). We multiply both members of the equation from the left by 
Lk and from the right by Uk to obtain 

k 

Lk(k - Dk)Uk = Z LjZjUj 
j=1 

and hence 

k k-i 

(3.9) LkbkUk = LkDkUk + 1j LjZjUj = Lk(Dk + Zk)Uk + 1j LjZjUj. 
j=1 j= 

As to the first term on the far right of (3.9), we have 

Lk-lPkTLk(Dk + Zk)UkPkUk-I = Lk-lDk_lUk- + Lk-lIPkHkFPkUk-lI 

By iterating on LkIlDkIlUk-l and on the second term on the far right of (3.9) 
it follows that 

k 

(3.10) 3M = LkbkUk - M = ZLj1PjTHjFnPjU 1. 
j=l 

The matrix 

(3.11) PJ( 3M) Q) 

has only a Ln/2j-lJ x Ln/2j-1J block on the main diagonal different from 
zero. By what was said in the previous section, the matrices Lj-l and U1_l 
are respectively lower and upper triangular, and they have the identity matrix 
in place of the nonnull block of (3.11). The result follows by simplifying the 
expression in (3.10). El 

In order to obtain an upper bound for the norm of 3M, we consider the 
following 
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Theorem 5. If M is diagonally dominant, then the matrices HF in (3.6) satisfy 

IIHFIloo ? IIjAIIjo u + 2IIMjj_jjIjI u < 3 IIMIIOo u, 
and for the error matrix we have 

(3.12) 1II3MIloo < 3klIMIlloKu. 
Proof. See the Appendix. o 

4. STABILITY OF THE SOLUTION OF THE TRIANGULAR SYSTEMS 

Because of roundoff errors, instead of the exact solution of the lower trian- 
gular system, we obtain an approximate solution y which is the exact solution 
of a problem 

(L + JL) = f. 
To calculate JL, we introduce, for each Li, an error matrix 3Li. From 

Algorithm 1 we see that the error at the step j can be obtained from 

(4.1) 
Yij) = y - (~sp2i_1)(1 + ul + U3) + UI jr)(1 + U2 + U3) 

1 +u4 ' Il1? U 

or, if written in block form, from 

(4.2) = (I + 3 Ci1 (?-I - (VJ + O Vj)? ) 

where 

(4.3) 1(SVjl < 2IVjl U, I0S;Vl < IU. 

Therefore, the error matrix at the step j is 

'O 
3Lj= 0 ) 

i Vj icj 
Our aim is to find a suitable bound for the norm in (3.2). For this, we first 

consider the product JLU. 

Theorem 6. The product JLU introduced in (3.2) satisfies 

k i 

(4.4) 3LU = Z17 PiTFjL P-i+1 
j=1 i=1 i=1 

where 

(0 
(4.5) H L= 0 

Jw Vj Aj J Vj Tj + J j Mj 
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Proof. In first-order approximation, we have 

k k k k 
JJPT(L.+3L.) = J7JJILI+ELj_1P7T3Lj J7 PiTLi = L + 3L. 

j=1 j=1 j=1 i=j+1 

Then 

k k k 

3L U = Z Lji p 1j L Ij PiT Lifki Uk-i+ 1 Pk-i+I 

(4.6) j-kl ~~~~i=j+1 i=1 (4.6) k= 

= ELj-fPjTfLjbjUj. 
j=1 

The structures of Lj-1 and Uj allow us to simplify the expression (4.6) and 
to obtain the following final expression for 3LU: 

k i I 

3LU = E I J PiT3Ljbj Uj I Pj-i+l. 
j=1 i=1 i=1 

From this, the assertion follows. E1 

The next theorem establishes an upper bound for the infinity norm of JLU. 

Theorem 7. If M is diagonally dominant, then the matrices HjL in (4.5) satisfy 

IIHjLj0o < 2(IjIAjIK + IIMjjIj_jjj) u < 4 IIMIKoo u 
and 

(4.7) 1IILUIK1 < 4k IIMIK1 u. 
Proof. See the Appendix. 5 

Similar results can be obtained for the solution of the upper triangular system. 
The following theorems hold. 

Theorem 8. The product LJU introduced in (3.2) satisfies 

k i I 
(4.8) L3U = E 11 PI HJU Pk-i+ 1, 

j=1 i=1 i= 
where 

Hju = / 4, ' -Pi for j < k, 

(4.9) pi'O 
4 

HU 3Ak PTk 
Pk3A k V~k3T k +36Mk/ 
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and 

I3oMkII < MkIuk, IUA1 <?2 IA1l u, Ik5TI? < 2 lTjl u. 

Theorem 9. If M is diagonally dominant, then the matrices HJU in (4.9) satisfy 

IjHjujjlo < 2 gMll>lIjo u+ IIkjfII)0 u < 3 IIMII00 u 

and 

(4.10) IIL35UIlKo < 3 k IIMHI0o u. 

The next theorem summarizes the results for the backward and forward error 
analyses made in this and in the previous section. 

Theorem 10. If the tridiagonal n x n matrix M is diagonally dominant by 
rows or by columns then, by using the cyclic reduction for solving Mx = f, the 
computed solution x satisfies, in first-order approximation, 

(M + AM)i = f, IIAMIK1 < 10 log2nJIIMI10 u, 
and 

(4.11 ) II I-x10 < 10 log2 nK(M) U, 

where K(M) is the condition number of the matrix M in the infinity norm. 
Proof. The backward error derives from (3.12), (4.7), and (4.10). The forward 
error is obtained from (3.3). El 

5. NUMERICAL EXPERIMENTS 

We have carried out numerical experiments to compare our estimates of the 
relative error in the cyclic reduction ( CR) algorithm with known estimates in 
the LU factorization. For the LU factorization we have used in our compar- 
ision the following upper bound (see [8, 16]): 

(5.1) -I lo<8K(M) U. 
IIXI00 

Numerical experiments indicate that the upper bound (4.11) is too pes- 
simistic. In order to improve it, we have computed the following sharper bound 
for the norm of the error matrix, using (3.5), (4.4), and (4.8): 

k i i 

(5.2) 11JAM100 < Z fPJT(IHTI + |Hf I + "Hju1) U Pji+l u. 
j=1 i=1 i=l 00 

We then have from (3.3) the following upper bound: 

(5.3) XI loo11X11 < K(M) 11AM1100 
(5.3) IlAMIloo can be estimt00 b (5M.) 00 
where II AM IIK can be estimated by (5.2) 
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10 -12 1 
-12 - bou nd in (4.1 il) .-.TrXr 

- --bound in (5.3) 
bound in (5.1) 
error for CR ---------- 

3 error for LU - - - - --- -.-.-.-.-.-. 

0 

- -- 

10-14 

10-16 

101 102 103 104 

dimension 

FIGURE 1. Upper bounds and relative errors for the test problem 1 

We report on four numerical examples, all having different coefficient matri- 
ces. The right-hand sides f were always chosen in order to obtain 

x = 1.4142 * (2, -1, 2, -1, ...2, _1)T 

as the solution of problem (2.1). We used the algorithm in [7] to compute the 
norm of the inverse of the coefficient matrix. 

Test problem 1 (see Figure 1). Consider the diagonally dominant Toeplitz matrix 

4 -1 

M =(2 4 
I 

with condition number Kc(M) < 7. The solution of (2.1) by the CR algorithm 
and by the LU factorization is obtained to within machine precision. There- 
fore, the upper bounds are excessively large. In particular, there is no error 
growth corresponding to the term log2 n in (4.1 1). 

Test problem 2 (see Figure 2). Consider a symmetric weakly diagonally domi- 
nant Toeplitz matrix 

(5 -2.5 

M= *~~* j~~ 
-2.5 M | -2.5 5 2*5 5 nx 
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10-1 10-1 
'bound in (a. 1. 

------bound in (5.3) 
bound in (5.1) 

10-4 ~error for CR 
error for LU 

10-7 

0 ~ - 

V~~~~~~~~~~~ 10-10 - - - - i 

10-13 

101 102 103 104 

dimension 

FIGURE 2. Upper bounds and relative errors for the test problem 2 

bouAd ih (4.11) 
10-7 bound in (5.3) 

bound in (5.1) 

10-8 error for CR 
error for LU - 

10-11 

R 10-12 - -. -, - ,,- - ,.-- 

10-15 

10-16 

10-121210 

dimension 

FIGURE 3. Upper bounds and relative errors for the test problem 3 

For matrices in this class, operations of the CR algorithm are performed ex- 
actly. Therefore the relative error is proportional to the machine precision. The 
condition number and the relative error for the LU factorization algorithm 
grow as 0(n2). 

Test problem 3 (see Figure 3). Consider a weakly diagonally dominant matrix 
M, of order n, defined by (see (2.2)) 
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1 --- bouAd m (4.f 1 
------ bound in (5.3) 
. bound in (5.1) 

error for CR 
10-. error for LU 

10-i 

10-8 - - I 

10-14 
101 102 103 104 

dimension 

FIGURE 4. Upper bounds and relative errors for the test problem 4 

ai = 1 b= 2c + (I - i * h)h 2c - (I - i . h)h 

where h 2/(n + 1). This matrix occurs in the discretization of a singular 
perturbation problem by finite differences (see [12]). We chose e = 0.1 in 
order to have diagonal dominance. Its condition number is 0(n2). 

Test problem 4 (see Figure 4). An ill-conditioned problem (K(M) = 1.64 *109 
for n = 500) derived from the discretization of another singular perturbation 
problem by finite differences given in [5, 8]. The n x n coefficient matrix M 
is defined by 

J if 1 < i <_ L J 
Ci- 

= 
-+05 ih if[ jI+l<i<n 

e 0.5-ih iflh < fn+ I j 
| h2 h if1 i L- 2 

b j h2 if L j +1 i ? n, 

ai = -(bi + ci), 

where h = l/(n + 1) and c = 0.009. The numbers cl and bn do not occur in 
the matrix M, but are only introduced to define a1 and an. The matrix M is 
a nonsingular, row diagonally dominant M-matrix, but it becomes singular for 
e-0. 
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We conclude that the cyclic reduction algorithm is stable for tridiagonal di- 
agonally dominant matrices. From our experiments we observe that the depen- 
dence on log2 n is pessimistic and does not describe the actual behavior of the 
error (the upper bound in (5.3) has the same behavior as that in (5.1)). 

6. APPENDIX 

Proof of Theorem 5. The matrices 5 Vj and 5Mj have the following structure: 

U s() '5t(J) A a <y(i) b (j) A 

JV= |i 6sU (51) ) and 6M*= c(j) aja2) 

where 

s(j)l~~~~~~~ 
< ci-)ai ) , ltil<I2ii )2i+1 

1U 

j6a(i) I ' ja() I u +2190(i)2i- 
1) 

I U+2jt,_fi)C-(j_1) Iu, 

lb()I < I -2i)(i+l) I , dI(i I 2 3()(i-l)I 

From the hypothesis of diagonal dominance we have 

1? bU0+ tii)a(A 1)0 ? je(i-1) + ib(j1i)j < laU-1) 

and therefore 

jjHjjfii < max(16ai()j + 16bW)j + kjci()I + ji(5si)a(i_1)j + j&V)a2i11) 

< max(ViJI)l + 2ja4(71)j + ibWi)l + 1P)l + lb2i 
1 + 1 )u 

< JjMjjjcOO U + 2 |jMj_jjj,o,u 

The assertion now follows from Theorem 3 and (3.7). 0 

Proof of Theorem 7. From (4.1) and (4.2) we obtain 

'As(i) '5'-fi) 

JVj=~~~' (J) iit~) , 

where 

16Pi()l ' 2jeij l)1a2ij l)j u, 1,t510)l < 2jb2ij l)1a(j-+l)j u. 

Moreover, from (4.3) we have 

iMI? < IjIu. 
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From the diagonal dominance we conclude 

lHj 1c < m x2 -9(i) b(i-1 ) 1t(i) -(i-') + -(i) (-1j + it-(i)b(i-'I iHfrK _ iaX( (li 2i?I I + i 2i+1 +I 2i- i 2i+1 

+ I+ ibi + + ti a2i+ 

< 2max(l&i4-')l + lci + ib0i + 1&01 + lb2i 1 + le2i l)u 

< 2 (IIMlloo + IIkj-iIIo) u. 

The assertion now follows from Theorem 3 and (3.7). 0 
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